Online Public Access Catalogue (OPAC)
Central Library - Vidyasagar University

“Education does not only mean learning, reading, writing, and arithmetic,

it should provide a comprehensive knowledge”

-Ishwarchandra Vidyasagar


Normal view MARC view ISBD view

Biophysics of DNA [ electronic resource ] / by Alexander Vologodskii.

By: Vologodskii, Alexander.
Material type: TextTextPublisher: Cambridge University Press , 2015ISBN: 9781139542371 ( e-book ).Subject(s): Physics And Astronomy | Life SciencesGenre/Form: Electronic booksOnline resources: https://doi.org/10.1017/CBO9781139542371 View to click Summary: Surveying the last sixty years of research, this book describes the physical properties of DNA in the context of its biological functioning. It is designed to enable both students and researchers of molecular biology, biochemistry and physics to better understand the biophysics of DNA, addressing key questions and facilitating further research. The chapters integrate theoretical and experimental approaches, emphasising throughout the importance of a quantitative knowledge of physical properties in building and analysing models of DNA functioning. For example, the book shows how the relationship between DNA mechanical properties and the sequence specificity of DNA-protein binding can be analyzed quantitatively by using our current knowledge of the physical and structural properties of DNA. Theoretical models and experimental methods in the field are critically considered to enable the reader to engage effectively with the current scientific literature on the physical properties of DNA.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
E-Book E-Book WWW
Available EB619

Surveying the last sixty years of research, this book describes the physical properties of DNA in the context of its biological functioning. It is designed to enable both students and researchers of molecular biology, biochemistry and physics to better understand the biophysics of DNA, addressing key questions and facilitating further research. The chapters integrate theoretical and experimental approaches, emphasising throughout the importance of a quantitative knowledge of physical properties in building and analysing models of DNA functioning. For example, the book shows how the relationship between DNA mechanical properties and the sequence specificity of DNA-protein binding can be analyzed quantitatively by using our current knowledge of the physical and structural properties of DNA. Theoretical models and experimental methods in the field are critically considered to enable the reader to engage effectively with the current scientific literature on the physical properties of DNA.

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha